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Abstract In this paper, finite-time anti-synchronization control of memristive neural net-
works with stochastic perturbations is studied. We investigate a class of memristive neural
networks with two different types of memductance functions. The purpose of the addressed
problem is to design a nonlinear controller which can obtain anti-synchronization of the drive
system and the response system in finite time. Based on two kinds of memductance func-
tions, finite-time stability criteria are obtained for memristive neural networks with stochastic
perturbations. The analysis in this paper employs differential inclusions theory, finite-time
stability theorem, linear matrix inequalities and Lyapunov functional method. These theoret-
ical analysis can characterize fundamental electrical properties of memristive systems and
provide convenience for applications in pattern recognition, associative memories, associa-
tive learning, etc.. Finally, two numerical examples are given to show the effectiveness of
our results.
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1 Introduction

In the past decades, in order to process information intelligently, people set up artificial
neural networks to simulate the functions of human brain. Traditional artificial neural net-
work has been implemented with circuit, and the connection between neural processing
units is realized with resistor. The resistance is equal to the strength of synapses between
neurons. The strength of synapses is variable while the resistance is invariable. Combin-
ing the memory characteristic and nanometer dimensions of memristor, the resistor is
replaced by memristor in order to simulate the artificial neural network of human brain
better. And the memristor eventually may have the potential to be used in artificial neural
networks. With the development of applications, memristive nanodevices as synapses and
conventional CMOS technology as neurons are widely adopted in order to design brain-like
processing systems. Recently, the authors in Refs. [1–6] have concentrated on the dynam-
ical nature of memristor-based neural networks in order to use it in applications, such as
pattern recognition, associative memories and learning, in a way that mimics the human
brain.

The stability issue for neural networks with stochastic perturbations has attracted a lot of
attention. In real nervous systems, because of random fluctuations from the release of neu-
rotransmitters and other probabilistic causes, the synaptic transmission is indeed an noisy
process. Therefore, in Refs. [7–11] authors have studied stochastic perturbations on neural
networks. In addition, anti-synchronization control of neural networks plays important roles
inmany potential applications, e.g., non-volatilememories, neuromorphic devices to simulate
learning, adaptive and spontaneous behavior. Moreover, the authors in Ref. [12] have studied
the anti-synchronization control of memristive neural networks. However, the memristor-
based neural networks models proposed and studied in the literature are deterministic. There-
fore, it is of practical importance to study the stochastic memristor-based neural networks.
To the authors’ best knowledge, there are few results about the anti-synchronization control
of memristive neural networks with stochastic perturbations.

Moreover, most literatures regarding the stability of neural networks with stochastic per-
turbations are based on the convergence time being large enough, even though we require
the states of neural networks become stable as quickly as possible in practical applications.
In order to achieve faster convergent speed and complete stabilization in finite time rather
than merely asymptotically, an effective method is to use finite-time techniques which have
demonstrated better robustness and disturbance rejection properties. Finite-time synchroniza-
tion control of complex networks has been investigated in Refs. [13,14]. Unfortunately, few
papers in the open literature considered the finite-time synchronization control of memris-
tive neural networks, let alone finite-time anti-synchronization ofmemristive neural networks
with stochastic perturbations.

In this paper, our aim is to shorten such a gap by making the attempt to deal with the
anti-synchronization problem for memristive neural networks with stochastic perturbations
in finite time. The difference of this paper lies in three aspects. First, we studied the anti-
synchronization control problem about the memristive neural networks with stochastic per-
turbations. Moreover, based on the differential inclusions theory and the finite-time stability
theorem, we proposed a nonlinear controller to ensure the stability of memristive neural
networks with stochastic perturbations in finite-time. Finally, according to two kinds of
memductance functions, finite-time stability criteria are obtained for memristive neural net-
works. Two numerical examples are provided to show the effectiveness of the proposed
theorems.
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Finite-Time Anti-synchronization Control 51

2 Preliminaries

We describe a general class of recurrent neural networks, and we give its circuit in Fig. 1. The
Kirchoff’s current law of its i th subsystem in Ref. [12] has been proposed by the following
equation:

ẋi (t) = − 1

Ci

⎡
⎣

n∑
j=1

1

Ri j
× sgini j + 1

Ri

⎤
⎦ xi (t)

+ 1

Ci

n∑
j=1

g j (x j (t))

Ri j
× sgini j ,

t ≥ 0, i = 1, 2, . . . , n, (1)

where xi (t) is the voltage of the capacitor Ci ; Ri j denotes the resistor through the feedback
function gi (xi (t)) and xi (t). Ri represents the parallel-resistor corresponding the capacitor
Ci . And

Fig. 1 (Color online) The circuit of recurrent neural networks in model (1)

123



52 W. Wang et al.

sgini j =
{

1, i �= j,
−1, i = j.

From (1), we have

ẋi (t) = −ãi xi (t) +
n∑
j=1

b̃i j g j (x j (t)),

t ≥ 0, i = 1, 2, . . . , n,

(2)

where

ãi = 1

Ci

⎡
⎣

n∑
j=1

1

Ri j
× sgini j + 1

Ri

⎤
⎦ ,

b̃i j = 1

CiRi j
× sgini j .

By replacing the resistor Ri j and Ri in the primitive neural networks (1) with memristor
whose memductance areWi j and Pi , we can construct the memristive neural networks of the
following form

ẋi (t) = −ai (xi (t))xi (t) +
n∑
j=1

bi j (xi (t))g j (x j (t)),

t ≥ 0, i = 1, 2, . . . , n,

(3)

where

ai (xi (t)) = 1

Ci

⎡
⎣

n∑
j=1

Wi j × sgini j + Pi

⎤
⎦ ,

bi j (xi (t)) = Wi j

Ci
× sgini j ,

Combining the physical structure of a memristor device, one can see that

Wi j = dqi j
dσi j

,

Pi = dpi
dχi

,

where qi j and σi j denote charge and magnetic fluxes corresponding to the memristor Ri j ,
and pi and χi denote charge and magnetic fluxes corresponding to the memristor Ri .

As we know that the pinched hysteresis loop is due to the nonlinearity of memductance
function.Based on two typicalmemductance functions, in this paper,we discuss the following
two cases which are proposed in Ref. [4].

Case 1: The memductance function Wi j , Pi are given by

Wi j =
{

ξi j , | σi j |< li j ,
ηi j , | σi j |> li j ,

Pi =
{

φi , | χi |< Ti ,
ϕi , | χi |> Ti ,

where ξi j , ηi j , φi , ϕi and li j , Ti are constants.
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Case 2: The memductance function Wi j is given by

Wi j = ci j + 3di jσ
2
i j ,

Pi = αi + 3βiχ
2
i ,

where ci j , di j , αi , βi are constants, i, j = 1, 2, . . . , n.

We give some definitions which are needed in the following.

Definition 1 (See [15]) Suppose E ⊆ Rn , then x → F(x) is called a set-valued map from
E → Rn , if for each point xεE , there exists a nonempty set F(x) ⊆ Rn . A set-valued map
F with nonempty values is said to be upper semi-continuous at x0εE , if for any open set N
containing F(x0), there exists a neighborhood M of x0 such that F(M) ⊆ N . The map F(x)
is said to have a closed (convex, compact) image if for each xεE, F(x) is closed (convex,
compact).

Definition 2 (See [16]) For the system ẋ(t) = f (x), xεRn , with discontinuous right-hand
sides, a set-valued map is defined as

F(t, x) =
⋂
δ>0

⋂
μ(N )=0

co[ f (B(x, δ) \ N )],

where co[E] is the closure of the convex hull of set E, B(x, δ) = {y : ‖y − x‖ ≤ δ} and
μ(N ) is Lebesgue measure of set N . A solution in Filippov’s sense of Cauchy problem for
this system with initial condition x(0) = x0 is an absolutely continuous function x(t), which
satisfies x(0) = x0 and differential inclusion

ẋ(t) ε F(t, x).

In order to establish our main results, it is necessary to give the following assumptions
and Lemmas.

Assumption 1 The function gi is odd function and bounded, and satisfies the Lipschitz
condition with a Lipschitz constants Qi , i.e.,

|gi (x) − gi (y) | ≤ Qi | x − y |, (4)

where Qi is a positive constant for i = 1, 2, . . . , n. We let Q = diag{Q1, Q2, . . . , Qn}.
Assumption 2 For i, j = 1, 2, . . . , n,

co{âi , ǎi }xi (t) + co{âi , ǎi }yi (t) ⊆ co{âi , ǎi }ei (t),
co{b̂i j , b̌i j }g j (xi (t)) + co{b̂i j , b̌i j }g j (yi (t))

⊆ co{b̂i j , b̌i j }(g j (xi (t)) + g j (yi (t))),

Lemma 1 ([17]) If a1, a2, . . . , an are positive numbers and 0 < r < p, then
(

n∑
i=1

a p
i

) 1
p

≤
(

n∑
i=1

ari

) 1
r

. (5)

Lemma 2 ([18]) If μ, ν(t), and ω are real matrices of appropriate dimension with ϑ satis-
fying ϑ = ϑT , then

ϑ + μν(t)ω + ωT νT (t)μT < 0 (6)

for all ν(t)νT (t) ≤ I , if and only if there exists a positive constant λ such that

ϑ + λ−1μμT + λωTω < 0. (7)
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54 W. Wang et al.

According to the features of memristor given in Case 1 and Case 2, the following two
cases can happen.

Case 1′: In case 1, according to the work in Ref. [19], we get

co(ai (xi (t)) =
⎧⎨
⎩
âi , − ḟi (xi (t)) − ẋi (t) < 0,
[ai , ai ], − ḟi (xi (t)) − ẋi (t) = 0,
ǎi , − ḟi (xi (t)) − ẋi (t) > 0,

co(bi j (xi (t)) =

⎧⎪⎨
⎪⎩

b̂i j , sgini j
d f j (x j (t))

dt − dxi (t)
dt < 0,

[bi j , bi j ], sgini j
d f j (x j (t))

dt − dxi (t)
dt = 0,

b̌i j , sgini j
d f j (x j (t))

dt − dxi (t)
dt > 0,

for i, j = 1, 2, . . . , n, where âi , ǎi b̂i j and b̌i j are constants, and āi = max{âi , ǎi }, ai =
min{âi , ǎi }. b̄i j = max{b̂i j , b̌i j }, bi j = min{b̂i j , b̌i j }. Solutions of all the systems considered

in this paper are intended in the Filippov’s sense. [·, ·] represents the interval. co{Δ̃, Δ̂}
denotes the closure of the convex hull of Rn generated by real numbers Δ̃ and Δ̂.

The system (3) is a differential equation with discontinuous right-hand sides, and based
on the theory of differential inclusion, if xi (t) is a solution of (3) in the sense of Filippov,
then system (3) can be modified by the following

ẋi (t)ε − co{ai (xi (t))}xi (t) +
n∑
j=1

co{bi j (xi (t))}g j (x j (t)),

t ≥ 0, i = 1, 2, . . . , n,

(8)

or equivalently, there exist ai (t)εco(ai (xi (t))) and bi j (t)εco(bi j (xi (t))), such that

ẋi (t) = −ai (t)xi (t) +
n∑
j=1

bi j (t)g j (x j (t)), t ≥ 0,

i = 1, 2, . . . , n,

(9)

where ai (t) and bi j (t) depend on the state xi (t) and time t .
In this paper, we consider system (8) or (9) as the drive system and the corresponding

response system is:

ẏi (t)ε − co{ai (yi (t))}yi (t) +
n∑
j=1

co{bi j (yi (t))}g j (y j (t)),

t ≥ 0, i = 1, 2, . . . , n,

(10)

or equivalently, there exist ai (t)εco(ai (yi (t))) and bi j (t)εco(bi j (yi (t))), such that

ẏi (t) = −ai (t)yi (t) +
n∑
j=1

bi j (t)g j (y j (t)), t ≥ 0,

i = 1, 2, . . . , n.

(11)

Let e(t) = (e1(t), e2(t), . . . , en(t))T be the anti-synchro- nization error, where ei (t) =
xi (t)+yi (t), using the theories of set-valuedmaps and differential inclusions, thenwe can get
the anti-synchronization error system in the following. Since there exist environmental noises
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Finite-Time Anti-synchronization Control 55

in real neural networks, stochastic perturbations should be considered in neural networks
models. According to Assumption 2, we get

dei (t) ε

⎡
⎣−co{ai (ei (t))}ei (t) +

n∑
j=1

co{bi j (ei (t))} f j (e j (t))
⎤
⎦ dt

+ h(t, ei (t))dwi (t), t ≥ 0,

i = 1, 2, . . . , n,

(12)

or equivalently, there exist ai (t)εco(ai (ei (t))) and bi j (t)εco(bi j (ei (t))), such that

dei (t) =
⎡
⎣−ai (t)ei (t) +

n∑
j=1

bi j (t) f j (e j (t))

⎤
⎦ dt

+ h(t, ei (t))dwi (t), t ≥ 0,

i = 1, 2, . . . , n,

(13)

where f j (e j (t)) = g j (x j (t)) + g j (y j (t)), and the white noise dwi (t) is independent of
dw j (t) for i �= j . w(t) = (w1(t), w2(t), . . . , wn(t))T εRn is an n-dimensional Brownian
motion. The intensity function h is the noise intensity functionmatrix satisfying the following
condition:

trace[hT (t, e(t)) · h(t, e(t))] ≤‖ Me(t) ‖2, (14)

where M is a known constant matrix with compatible dimensions, and e(t) = (e1(t), e2(t),
. . . , en(t)).

Let A(t) = (ai (t))n×n, Â = (âi )n×n, Ǎ = (ǎi )n×n, co{ Â, Ǎ} = [A, Ā], where A =
(ai )n×n, Ā = (āi )n×n and B(t) = (bi j (t))n×n, B̂ = (b̂i j )n×n, B̌ = (b̌i j )n×n, co{B̂, B̌} =
[B, B̄], where B = (bi j )n×n, B̄ = (b̄i j )n×n , then Eq. (13) can be written in the compact
form:

de(t) = [−A(t)e(t) + B(t) f (e(t))]dt + h(t, e(t))dw(t), (15)

Case 2′: ai (xi (t)) and bi j (xi (t)) are continuous functions, and Ψ i ≤ ai (xi (t)) ≤ Ψ i

where Ψ i and Ψ i are constants. Λi j ≤ bi j (xi (t)) ≤ Λi j where Λi j and Λi j are constants.
Similar to the case 1′, letΨ (t) = (Ψi (t))n×n ,whereΨ = (Ψ i )n×n, Ψ̄ = (Ψ̄i )n×n, Λ(t) =

(Λi (t))n×n , and Λ = (Λi )n×n, Λ̄ = (Λ̄i )n×n . By adding the drive system and the response
system, the error system can be written in the compact form as follows:

de(t) = [−Ψ (t)e(t) + Λ(t) f (e(t))]dt + h(t, e(t))dw(t). (16)

3 Main Results

In this section, according to two cases of memductance functions, discrete and continuous
finite-time synchronization criteria are given for memristive neural networks, respectively.
Two corollaries are derived for the memristive neural networks without stochastic perturba-
tions.

123



56 W. Wang et al.

3.1 Finite-Time Synchronization Criteria in Case 1′

Theorem 1 If there exists a constant ε and a positive-definite matrix ZεRn×n which satisfy
that

− Z A − AT Z − 2K 1Z + ε−1Z B̄ B̄T Z + εQT Q

+ λmax(Z)MT M < 0,
(17)

then the system (15) under the following controller ui (t) can achieve the finite-time synchro-
nization,

ui (t) = −ki1ei (t) − ki2sgn(ei (t)) | ei (t) |α, (18)

where 0 < α < 1, ki1 and ki2 are positive constants.

And

sgn(ei (t)) =
⎧⎨
⎩

−1, | ei (t) |< 0,
0, | ei (t) |= 0,
1, | ei (t) |> 0.

The upper bound of its convergent time is

λmax (Z)

λmin(Z)
· ‖ e(0) ‖1−α

K 2(1 − α)
, (19)

where

K1 = (k11, k21, . . . , kn1)
T ,

K2 = (k12, k22, . . . , kn2(t))
T ,

K 1 = min(k11, k21, . . . , kn1)
T ,

K 2 = min(k12, k22, . . . , kn2)
T .

Proof The system (15) under the controller u(t) can be written as

de(t) = [−A(t)e(t) + B(t) f (e(t)) + u(t)]dt + h(t, e(t))dw(t), (20)

where

e(t) = (e1(t), e2(t), . . . , en(t))
T ,

u(t) = (u1(t), u2(t), . . . , un(t))
T ,

f (e(t)) = ( f1(e1(t)), f2(e2(t)), . . . , fn(en(t)))
T ,

Transform (18) into the compact form as follows:

u(t) = −K1e(t) − K2sgn(e(t)) | e(t) |α . (21)

Consider the controlled system (20) with controller (21), we have

de(t) = [ − A(t)e(t) + B(t) f (e(t)) − K1e(t)

− K2sgn(e(t)) |e(t) |α ]
dt + h(t, e(t))dw(t).

(22)

	

We construct the Lyapunov function as follows:

V (e(t)) = eT (t)Ze(t), (23)
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then we calculate the time derivative of V (e(t)) along the trajectories of the system (22). By
the Itô’s formula in Ref. [20], we obtain the stochastic differential as

dV (e(t)) = LV (e(t))dt + 2eT (t)Zh(t, e(t))dw(t), (24)

where

LV (e(t)) = 2eT (t)Z
[
(−A(t) − K1)e(t) + B(t) f (e(t))

−K2sgn(e(t)) | e(t) |α ] + trace
[
hT (t)Zh(t)

]

= 2eT (t)Z(−A(t) − K1)e(t) + 2eT (t)Z B(t) f (e(t))

+trace
[
hT (t)Zh(t)

] − 2K2e
T (t)Zsgn(e(t)) | e(t) |α . (25)

According to Lemma 2 and Assumption 1, we have

2eT (t)Z B(t) f (e(t)) ≤ ε−1eT (t)Z B(t)BT (t)Ze(t) + ε f T (e(t)) f (e(t))

≤ ε−1eT (t)Z B(t)BT (t)Ze(t) + εeT (t)QT Qe(t),
(26)

where ε > 0 is an arbitrary positive constant.
Combining (25)–(26) results in

LV (e(t)) ≤ eT (t)
[

− Z A − AT Z − 2K 1Z + ε−1Z B̄ B̄T Z

+ εQT Q + λmax(Z)MT M
]

× e(t) − 2K 2λmin(Z)

n∑
i=1

|ei (t) |α+1 .
(27)

According to 0 < α < 1 and Lemma 1, we get

(
n∑

i=1

|ei (t) |α+1

) 1
α+1

≥
(

n∑
i=1

| ei (t) |2
) 1

2

, (28)

then,
n∑

i=1

| ei (t) |α+1≥
(

n∑
i=1

| ei (t) |2
) α+1

2

=
[
eT (t)e(t)

] α+1
2

. (29)

Thus, based on (17), taking the expectations on both sides of (27), we have

E{dV (e(t))} ≤ −2K 2λmin(Z)E

{[
eT (t)e(t)

] α+1
2

}

≤ −2K 2λmin(Z)[λmax (Z)] −(α+1)
2 E

{
V (e(t))

(α+1)
2

}

≤ −2K 2λmin(Z)[λmax (Z)] −(α+1)
2 E

{
V (e(t))

(α+1)
2

}
.

(30)

And

E
{
V

(α+1)
2 (e(0))

}
=

(
E{V (e(0))}

) (α+1)
2

.

123



58 W. Wang et al.

By the finite-time stabilization theory in [21], V (e(t)) stochastically converges to zero in
finite time, whose upper bound is

T = [λmax (Z)] (α+1)
2 [V (e(0))] (1−α)

2

2K 2λmin(Z)
(1−α)

2

≤ [λmax (Z)] (α+1)
2 [λmax (Z)] (1−α)

2 ‖ e(0) ‖1−α
2

λmin(Z)K 2(1 − α)

≤ λmax (Z)

λmin(Z)
· ‖ e(0) ‖1−α

K 2(1 − α)
.

(31)

Thus we complete the proof.

Corollary 1 In case 1′, if there exist a constant ε and a positive-definite matrix ZεRn×n

which satisfy
− Z A − AT Z − 2K 1Z + ε−1Z B̄ B̄T Z + εQT Q < 0, (32)

thenwhen the system (15) without stochastic perturbations via the controller (18) will achieve
the synchronization in finite-time and the upper bound of its synchronization time is the same
as (31).

3.2 Finite-Time Synchronization Criteria in Case 2′

Theorem 2 Under the case 2′, the system (16) under the controller (18) will achieve the
finite-time synchronization, if there exist a constant ε and a positive-definite matrix ZεRn×n

which satisfy that

− ZΨ − Ψ T Z − 2K 1Z + ε−1ZΛ̄Λ̄T Z + εQT Q

+ λmax(Z)MT M < 0.
(33)

The upper bound of its convergence time is the same as that in Theorem 1.

Proof By Eq. (16), it is easy to know

dei (t) ≤
[

− Ψi (t)ei (t) +
n∑
j=1

Λi j (t) f j (e j (t)) + ui (t)

]
dt + h(t, ei (t))dwi (t), (34)

Transform (34) into the compact form as follows:

de(t) = [ − Ψ (t)e(t) + Λ(t) f (e(t)) − K1e(t)

− K2sign(e(t)) | e(t) |α ]
dt + h(t, e(t))dw(t),

(35)

We construct the Lyapunov function as follows:

V (e(t)) = eT (t)Ze(t). (36)

Then we calculate the time derivative of V (e(t)) along the trajectories of system (35). By
Itô’s formula, we obtain the following stochastic differential as

dV (e(t)) = LV (e(t))dt + 2eT (t)Zh(t, e(t))dw(t), (37)

123



Finite-Time Anti-synchronization Control 59

where
LV (e(t)) = 2eT (t)Z

[
(−Ψ (t) − K1)e(t) + Λ(t) f (e(t))

− K2sign(e(t)) |e(t) |α ] + trace
[
hT (t)Zh(t)

]

= 2eT (t)Z(−Ψ (t) − K1)e(t) + 2eT (t)ZΛ(t) f (e(t))

+ trace
[
hT (t)Zh(t)

] − 2K2e
T (t)Zsign(e(t)) | e(t) |α .

(38)

	


According to Lemma 2 and Assumption 1, we have

2eT (t)ZΛ(t) f (e(t))

≤ ε−1eT (t)ZΛ̄Λ̄T Ze(t) + ε f T (e(t)) f (e(t))

≤ ε−1eT (t)ZΛ̄Λ̄T Ze(t) + εeT (t)QT Qe(t),

(39)

where ε > 0 is an arbitrary positive constant.
Combining (38)–(39) results in

LV (e(t)) ≤ eT (t)
[ − ZΨ − Ψ T Z − 2K 1Z + ε−1ZΛ̄Λ̄T Z

+ εQT Q + λmax(Z)MT M
] × e(t) − 2K 2λmin(Z)

n∑
i=1

| ei (t) |α+1 .
(40)

According to 0 < α < 1 and Lemma 1, we get

(
n∑

i=1

| ei (t) |α+1

) 1
α+1

≥
(

n∑
i=1

| ei (t) |2
) 1

2

, (41)

then,
n∑

i=1

| ei (t) |α+1 ≥
(

n∑
i=1

| ei (t) |2
) α+1

2

=
[
eT (t)e(t)

] α+1
2

. (42)

Thus, based on Eq. (33), taking the expectations on both sides of Eq. (40), we have

E{dV (e(t))} ≤ −2K 2λmin(Z)E

{[
eT (t)e(t)

] α+1
2

}

≤ −2K 2λmin(Z)[λmax (Z)] −(α+1)
2 E

{
V (e(t))

(α+1)
2

}

≤ −2K 2λmin(Z)[λmax (Z)] −(α+1)
2 E

{
V (e(t))

(α+1)
2

}
.

(43)

And

E
{
V

(α+1)
2 (e(0))

}
=

(
E{V (e(0))}

) (α+1)
2

.

123



60 W. Wang et al.

By the finite-time stabilization theory , V (e(t)) stochastically converges to zero in finite
time. The upper bound of its convergent time is

T = [λmax (Z)] (α+1)
2 [V (e(0))] (1−α)

2

2K 2λmin(Z)
(1−α)

2

≤ [λmax (Z)] (α+1)
2 [λmax (Z)] (1−α)

2 ‖ e(0) ‖1−α
2

λmin(Z)K 2(1 − α)

≤ λmax (Z)

λmin(Z)
· ‖ e(0) ‖1−α

K 2(1 − α)
.

(44)

Thus we complete the proof.

Remark 1 This paper fills the gap of finite-time control of memristive neural networks.
According to two kinds of memductance functions, discrete and continuous finite-time sta-
bility criteria are obtained for memristive neural networks, respectively.

Remark 2 In this paper, the proposed two synchronization criteria not only ensure the neural
networks with stochastic perturbations can achieve stabilization, but also can estimate the
upper bound of the convergence time. The proposed theoretical results provide the conve-
nience for related applications of memristive neural networks.

Corollary 2 Under Case 2′, the system (16) without stochastic perturbations under con-
troller (18) will achieve finite-time synchronization, if there exist a constant ε and a positive-
definite matrix ZεRn×n which satisfy that

− ZΨ − Ψ T Z − 2K 1Z + ε−1ZΛ̄Λ̄T Z + εQT Q < 0. (45)

The upper bound of its converge time is the same as Eq. (44).

4 Illustrative Example

In this section, two numerical examples are given to illustrate the effectiveness of the results
obtained above.

Example 1 In Case 1′, we consider the two-dimensional memristive neural network with
stochastic perturbations as follows:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = −a1(x1(t))x1(t) + b11(x1(t)) f (x1(t))
+ b12(x1(t)) f (x2(t)) + h(t, x1(t))dw1(t),

ẋ2(t) = −a2(x2(t))x2(t) + b21(x2(t)) f (x1(t))
+ b22(x2(t)) f (x2(t)) + h(t, x2(t))dw2(t),
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where f (x(t)) = tanh(x(t)), and

a1(x1(t)) =
{
1, − ḟi (x1(t)) − ẋ1(t) ≤ 0,
1.4, − ḟi (x1(t)) − ẋ1(t) > 0,

a2(x2(t)) =
{
1.7, − ḟi (x2(t)) − ẋ2(t) ≤ 0,
1, − ḟi (x2(t)) − ẋ2(t) > 0,

b11(x1(t)) =
{
0.3, − d f (x1(t))

dt − dx1(t)
dt ≤ 0,

0.4, − d f (x1(t))
dt − dx1(t)

dt > 0,

b12(x1(t)) =
{
0.2, d f (x2(t))

dt − dx1(t)
dt ≤ 0,

0.3, d f (x2(t))
dt − dx1(t)

dt > 0,

b21(x2(t)) =
{
0.2, d f (x1(t))

dt − dx2(t)
dt ≤ 0,

0.3, d f (x1(t))
dt − dx2(t)

dt > 0,

b22(x2(t)) =
{
0.3, − d f (x2(t))

dt − dx2(t)
dt ≤ 0,

0.5, − d f (x2(t))
dt − dx2(t)

dt > 0.

So we get

B =
(
0.3 0.2
0.2 0.3

)
, B̄ =

(
0.4 0.3
0.3 0.5

)
.

And h(t, x(t)) = diag(tanh(x1(t)), tanh(x2(t))). Then Q = M is a 2×2 identitymatrix.
The initial values of the error system are e(0) = [1,−1]T , then we get ‖ e(0) ‖= 1.414. We
choose α = 0.5. If Z is an identity matrices, and ε = 1, K 1 = 2, then we get

− Z A − AT Z − 2K 1Z + ε−1Z B̄ B̄T Z + εQT Q

+ λmax(Z)MT M < 0.

By choosing an arbitrary gain and the upper bound K 2 = 0.6, the system in Example 1

is stabilized in finite time. The upper bound of its convergence time is T = ‖e(0)‖0.5
0.6×0.5 =

3.9637. The simulation results are depicted in Fig. 2, which shows the evolutions of the errors
e1(t), e2(t) for the controlled system in Example 1. The simulation results have confirmed
the effectiveness of Theorem 1.

Example 2 In Case 2′, we consider the following two-dimensional memristive neural net-
work with stochastic perturbations

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = −a1(x1(t))x1(t) + b11(x1(t)) f (x1(t))
+ b12(x1(t)) f (x2(t)) + h(t, x1(t))dw1(t),

ẋ2(t) = −a2(x2(t))x2(t) + b21(x2(t)) f (x1(t))
+ b22(x2(t)) f (x2(t)) + h(t, x2(t))dw2(t),

where f (x(t)) = tanh(x(t)), and a1(x1(t)) = 1 + 0.3sin(x1(t)), a2(x2(t)) = 1 +
0.6cos(x2(t)), b11(x1(t)) = 0.6sin(x1(t)), b12(x1(t)) = 0.8sin(x1(t)), b21(x2(t)) =
0.8cos(x2(t)), b22(x2(t)) = 0.6cos(x2(t)), K 1 = 0.5, and the values of other parameters
are as the same as those in Example 1. Then we have

Λ̄ =
(
0.6 0.8
0.8 0.6

)
,
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Fig. 2 (Color online) The error curves of the system in Example 1 via the controller (18), the upper bound of
its convergence time is 3.9637
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Fig. 3 (Color online) The error curves of the system in Example 2 with the controller (18), its upper bound
of the convergence time is 2.3782

and we verified that
− ZΨ − Ψ T Z − 2K 1Z + ε−1ZΛ̄Λ̄T Z

+ εQT Q + λmax(Z)MT M < 0.
(46)

From Fig. 3, we can see that the error curves become convergent. The upper bound of the

convergence time is T = ‖e(0)‖0.5
0.5×0.5 = 2.3782, which verified the effectiveness of Theorem 2.
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5 Conclusion

This paper studied finite-time anti-synchronization control of memristive neural network
with stochastic perturbations. According to two kinds of memductance functions, finite-time
stability criteria are obtained for memristive neural networks. It can well mimic the human
brain in many applications, such as pattern recognition and associative memories. Finally,
two numerical examples are given to illustrate the effectiveness of the proposed results.
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